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Abstract. Laser-assisted electron-atomic-hydrogen “elastic” scattering is studied in the first Born approx-
imation. The initial and final states of projectile electron are described by the Volkov wavefunctions; the
dressed state of target described by a time-dependent perturbative wavefunction in soft photon approxi-
mation. The laser modified cross-sections are calculated in two distinct geometries for laser polarization
either parallel or perpendicular to the incident direction of electron. The numerical results shows that
the multiphoton cross-sections oscillate by a few orders over the whole scattering angular region. The
results for a parallel geometry oscillate more frequently in the intermediate angles; while the results for a
perpendicular geometry oscillate more frequently in the forward and backward angles. At large scattering
angles, the sum rule of Kroll and Watson is noticeably violated. The laser modification on summed total
cross-section increases with field strength, but decreases with field frequency and polarization deviation
from the incident direction.

PACS. 34.50.Rk Laser-modified scattering and reactions – 34.80.-i Electron scattering – 32.80.Wr Other
multiphoton processes – 34.90.+q Other topics in atomic and molecular collision processes and interactions

1 Introduction

Since the pioneer work of Bunkin and Fedorov [1], laser-
assisted electron-atom collisions have been extensively
studied [2–4]. The laser-assisted “elastic” scattering (free-
free transition) is the simplest one of this kind of collisions.
In the theoretical treatment of the free-free process, the
atomic target was initially described by a static potential
but starting with the work of Gersten and Mittleman [5]
the dressing of target was taken into account, and the
radiation-atom interaction was treated perturbatively.
Along the same lines, work was published by Zon [6],
Berlin and Zon [7], Joachain and co-workers [8–10], Dubois
et al. [11,12], and other authors [13–17]. The experimen-
tal reports on this process may be found in the work of
Weingartshofer et al. [18–20] and Wallbank et al. [21–25].
Although much progress has been achieved during the past
decades in understanding many aspects of this process,
the effects on one another of such new insights are not al-
ways apparent in the literature. In fact, the laser-assisted
scattering is a time-dependent problem, an united exact
treatment is generally not possible. Various models or ap-
proximations are developed to study different aspect of
the problem. For nonresonant field case, a perturbative
treatment to the dressed state of target needs to take
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an infinite number of coupled states into account, thus
greatly increases the computer labor. In most calculations,
only a few multiphoton processes are considered and only
the cross-section behavior in a small angular range is dis-
cussed.

In this paper, the “elastic” collision between an elec-
tron and an atomic hydrogen in the presence of an in-
tense nonresonant laser field is investigated in the first
Born approximation (FBA) with using a dressed wave
function of target obtained as a perturbative solution of
time-dependent Schrödinger equation in velocity gauge,
and simplified in soft-photon approximation [26]. A large
number of multiphoton processes are taken into account,
and the calculation covers the whole angular range. In Sec-
tion 2, the theory is set up. In Section 3, the laser modified
cross-sections and their dependence on laser parameters
are discussed. Section 4 contains conclusions. The atomic
unit ~ = m = e = 1 will be used through out.

2 Theory

Consider the electron-atomic-hydrogen “elastic” scatter-
ing embedded in a spatially homogeneous laser back-
ground. The laser is described as a linearly polarized
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classical electromagnetic field by vector potential

A(t) = A0 cosωt (1)

or electric field strength

E(t) = E0 sinωt (2)

where E0 = (ω/c)A0 (c is the velocity of light in vacuum).
We choose the target nucleus as the origin of the coordi-
nate system which is assumed infinitely massive, set z-axis
along the incident direction of the projectile electron, and
the zx-plane is defined by the polarization vector E0

and the incident momentum ki. The positions of incident
and bound electrons are labeled by r0 and r1 respectively.

In FBA the scattering matrix for the direct free-free
transition is

Sdir = −i
∫ ∞
−∞

dt
〈
χkf (r0, t)ψH

0 (r1, t)
∣∣∣∣− 1
r0

+
1
r10

∣∣∣∣
× χki(r0, t)ψH

0 (r1, t)
〉

(3)

where r10 = r1 − r0. χki(r0, t) and χkf (r0, t) are respec-
tively the initial and final states of free electron. They may
generally be described by the Volkov wavefunction [27,28],

χk(r0, t) = (2π)−3/2 exp

{
i
[
k·r0 − k·α0 sinωt

−Et− 1
2c2

∫ t

−∞
A2(t′)dt′

]}
(4)

where α0 = E0/ω
2 and E = k2/2. ψH

0 (r1, t) is the dressed
ground state of target, which is obtained by the time-
dependent perturbation theory [26]

ψH
0 (r1, t) =

{
1−

[
i cosωt+

ω

ω̄H
sinωt

]
1
ω
E0·r1

}
φH

0 (r1)

× exp
{
−i
[
WH

0 t+
1

2c2

∫ t

−∞
dt′A2(t′)

]}
(5)

in which WH
0 = 1/2 a.u. is the ground state energy of

atomic hydrogen, ω̄H = 4/9 a.u. the average excitation
energy for the dressed ground state [29]. φH

0 (r1) is the
“bare” ground state,

φH
0 (r1) =

1√
π

e−µr1 , (µ = 1). (6)

Substitute equations (4–6) into equation (3), and perform
the time integration we obtain,

Sdir = i(2π)−1
∞∑

l=−∞
fdir
l δ(Ef −Ei + lω) (7)

in which

fdir
l = 2Jl(q·α0)

[(q2 + 4µ2)2 − 16µ]
(q2 + 4µ2)2

− 256
ω̄H

J ′l (q·α0)
E0·q

q2(q2 + 4µ2)3
(8)

where q = kf − ki is the momentum transfer of projec-
tile. In obtaining equation (8), we have used the following
formulas for Bessel functions [30],

eiy sinu =
∞∑

l=−∞
Jl(y)eilu (9)

and

Jl−1(y)− Jl+1(y) = 2J ′l (y). (10)

The first term on the right-hand side of equation (8),
called “electronic”, describes the scattering of a Volkov
electron by the undressed atom; the other one, called
“atomic”, occurs as a result of the dressing effect of tar-
get [14].

In the same way, we may calculate the exchange scat-
tering matrix,

Sexc = −i
∫ ∞
−∞

dt
〈
χkf (r1, t)ψH

0 (r0, t)
∣∣∣∣− 1
r0

+
1
r10

∣∣∣∣
× χki(r0, t)ψH

0 (r1, t)
〉
· (11)

Evaluating the time integration yields,

Sexc = i(2π)−1
∞∑

l=−∞
f exc
l δ(Ef −Ei + lω) (12)

in which

f exc
l =

4ν

{
Jl(q·α0) +

[
l

ωq·α0
Jl(q·α0) +

1
ω̄H

J ′l (q·α0)
]
E0·

∂

∂ki

−
[

l

ωq·α0
Jl(q·α0)− 1

ω̄H
J ′l (q·α0)

]
E0·

∂

∂kf

}

×
[

4
(k2

i + µ2)(k2
f + ν2)2

− µ
∫ 1

0

s(1− s)

15Γ 4 + 14Γ 2Λ2 + 3Λ4

Γ 5(Γ 2 + Λ2)3
ds
]

(13)

where µ = ν = 1, and

Γ =
[
µ2s+ ν2(1− s) + |kf − ki|2 s(1− s)

]1/2
(14)

Λ = ski + (1− s)kf (15)

(see the Appendix). In equation (13), the terms multi-
plied by Jl(q·α0) are “electronic”, the terms multiplied
by J ′l (q·α0) “atomic”.

The differential cross-section accompanying l photons
exchanged between the electron-atom system and the laser
background is,

dσl
dΩ

=
kf

ki

(
1
4

∣∣fdir
l + f exc

l

∣∣2 +
3
4

∣∣fdir
l − f exc

l

∣∣2) · (16)
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Fig. 1. Differential cross-sections for electron-atomic-hydrogen
free-free transition at impact energy Ei = 50 eV, field ampli-
tude (intensity) E0 = 108 Vcm−1, and photon energy (field
frequency) ~ω = 1.17 eV for (a) no photon exchange (l = 0),
(b) one-photon emission (l = 1) and (c) absorption (l = −1),
(d) two-photon emission (l = 2) and (e) absorption (l = −2).
Dashed lines: results for a parallel geometry E0‖ki. Dotted
lines: result for a perpendicular geometry E0⊥ki.

Sum over all the multiphoton cross-sections we gain the
summed differential cross-section,

dσ
dΩ

=
+∞∑
l=−∞

dσl
dΩ
· (17)

Integrating over the solid angle yields the summed total
cross-section for the laser-assisted “elastic” scattering,

σ =
∫

dσ
dΩ

dΩ. (18)

3 Results and discussion

In Figure 1 we display the differential cross-section ac-
companying l = 0,±1,±2 photons exchanged between the
electron-atom system and the radiation field, for impact
energy Ei = 50 eV, field amplitude E0 = 108 Vcm−1, and
photon energy (field frequency) ~ω = 1.17 eV. We are
working in two distinct geometries for the laser polariza-
tion vector E0 either parallel or perpendicular to the inci-
dent momentum ki. The features of these graphs are more
or less the same. Each cross-section oscillates by a few
orders over the whole scattering angular range. However,
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Fig. 2. Values of differential cross-sections at a scattering angle
θ = 120◦ and an azimuth angle φ = 0◦ (the zx-plane is defined
by the polarization vector E0 and the incident momentum ki)
for each multiphoton process. The impact energy and laser
parameters are the same as in Figure 1. Solid circles: result for
E0‖ki. Open circles: result for E0⊥ki.

there is a significant difference between the results of both
geometries in each graph: the cross-section for a parallel
geometry oscillate more frequently in the intermediate an-
gles, and its envelop (not drown in each graph) declines
with scattering angle increasing; in contrast, the results
for a perpendicular geometry oscillate more frequently at
the forward and backward angles, and its envelop (not
present in each graph) rise after θ = 90◦. In fact at the
impact energy considered, the direct amplitude dominates
the exchange amplitude. The Bessel function Jl(q·α0) and
its derivative J ′l (q·α0) appearing in the direct amplitude
of equation (8) is responsible for the cross-section oscilla-
tion. For a parallel polarization geometry, the argument of
Bessel function changes slowly against the scattering an-
gle in the forward and backward direction, which cause the
cross-sections oscillating slowly; in medium angular range
the argument varies rapidly, and leads to the rapid oscil-
lation of cross-section at mediate angles. For a perpendic-
ular polarization geometry, the situation is opposite: the
argument of Bessel functions varies rapidly at small and
large angles, but slowly at intermediate angles, thus leads
to the opposite feature in the perpendicularly polarized
cross-sections.

Figure 2 shows the values of differential cross-sections
in both geometries against the exchanged photon num-
ber at a scattering angle θ = 120◦, and an azimuth an-
gle φ = 0◦. Positive l corresponds to the case when the
electron-atom system emits photons to the laser field (the
stimulated Bremsstrahlung), while negative l is associate
with photon absorption (the inverse Bremsstrahlung). We
find that for both geometries, the inverse Bremsstrahlung
processes dominate the bremsstrahlung processes. The
results for a parallel geometry cover a relatively wider
regime of photon numbers than that for a perpendic-
ular geometry. According to the asymptotic expression
of Bessel function at large argument Jl(l/cosha) ≈
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Fig. 3. Summed differential cross-section at azimuth angle
φ = 0◦. The impact energy and laser parameters are the same
as in Figure 1. Solid line: result for laser-free. Dashed line:
result for E0‖ki. Dotted line: result for E0⊥ki.

el tanh a−la/
√

2lπ tanh a [30], Jl(x) declines with l when l is
large enough. The greater the argument, the more rapidly
the Bessel function declines. At the scattering angle con-
sidered, the argument of Jl(q·α0) acquires a greater value
in a perpendicular polarization geometry than in a parallel
geometry, therefore the cross-section for a perpendicular
geometry declines more rapidly for large l.

In Figure 3 we give the summed differential cross-
sections. The summed cross-sections for both geometries
are hardly affected by laser at small scattering angles, but
highly modified at large angles. This suggests that at large
angles, the sum rule of Kroll and Watson [31,32] is vio-
lated. As a matter of fact, during such a scattering process,
the state of target remains unchanged after the collision
happens. The target is no more a “spectator”. Without
the presence of such a “spectator”, a free electron can not
exchange energy with the radiation field. At small scat-
tering angle (or large impact parameter), the state of pro-
jectile electron is not very strongly affected by the target,
and exchange less energy with the field background, thus
the contribution of laser modification on cross-section at
small angle is small. Large angle scattering is associated
with the projectile acceleration by the Coulomb field of
target. During the acceleration processes, the projectile
may exchange a considerable amount of photons with the
laser field. The laser oscillation tends to keep the projec-
tile around the target and enhance the scattering proba-
bility backward, thus the summed cross-section is notably
enhanced at large angles. For a perpendicular geometry,
apart from the above effect, the field also deflects the in-
cident electron from aiming at the target, thus the cross-
section enhancement in a perpendicular geometry is not
as significant as that in a parallel geometry.

When the laser polarization deviates from the inci-
dent direction, the axial symmetry of the collision pro-
cess is broken, thus the cross-sections becomes azimuth-
dependent. Figure 4 shows the summed cross-section of
the perpendicular geometry versus the azimuth angle.
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Fig. 4. Summed differential cross-section against azimuth an-
gle at scattering angle θ = 120◦. The impact energy and laser
parameters are the same as in Figure 1. Solid line: result for
laser-free. Dotted line: result for E0⊥ki.
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Fig. 5. Summed total cross-sections for laser-assisted “elastic”
scattering. The laser parameters are the same as in Figure 1.
Solid line: result for laser-free. Dashed line: result for E0‖ki.
Dotted line: result for E0⊥ki.

Since the laser-assisted collision process is symmetric
about the zx-plane, the polarization dependence is peri-
odic. When the momentum of scattered electron is in the
zx-plane (φ = 0◦, 180◦), the cross-section is maximized;
when kf perpendicular to the zx-plane (φ = 90◦, 270◦),
the result is minimized. This is because that when elec-
tron in the plane of E0 and ki, its state is most efficiently
modified by the field.

Figure 5 shows the summed total cross-section for the
laser-assisted “elastic” scattering. The total cross-section
enhancement is mainly contributed by the differential
cross-section of large angles. Since the laser-enhancement
for a parallel geometry is greater than that for a perpen-
dicular geometry, the total cross-section for the former
case is higher than that for the latter case.

Figures 6–8 respectively demonstrate the dependence
of summed total cross-sections on field amplitude (inten-
sity), photon energy (laser frequency), and orientation of
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Fig. 6. Summed total cross-sections against field strength for
impact energy Ei = 50 eV and photon energy ~ω = 1.17 eV.
Solid line: result for laser-free. Dashed line: result for E0‖ki.
Dotted line: result for E0⊥ki.
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Fig. 7. Summed total cross-sections against laser photon en-
ergy Eph = ~ω for impact energy Ei = 50 eV and field ampli-
tude E0 = 108 Vcm−1. Solid line: result for laser-free. Dashed
line: result for E0‖ki. Dotted line: result for E0⊥ki.

polarization (assume that the orientation of E0 varies in
the zx-plane). The stronger the laser, the more likely the
colliding system exchange photons with the filed, thus the
more the cross-section enhancement. The lower the fre-
quency, the more the average contribution of laser to the
cross-section enhancement (the resonance case is not in-
cluded). As we expect, the more the polarization deviated
from the incident direction, the less likely the scattering
is assisted, thus the result reaches the maximum at a par-
allel geometry (Θ = 0◦, 180◦), but gains its minimum at
a perpendicular geometry (Θ = 90◦, 270◦).

4 Conclusions

In the present work we have calculated the multipho-
ton cross-sections and the summed cross-sections for the



162 The European Physical Journal D

0 60 120 180 240 300 360
0.20

0.25

0.30

0.35

0.40

σ
(a
.u
.)

Θ (deg)

Fig. 8. The dependence of summed total cross-sections on po-
larization orientation (assume that the orientation of E0 varies
in the zx-plane). The impact energy and laser parameters are
the same as in Figure 1. Solid line: result for laser-free. Dashed
line: result for E0‖ki. Dotted line: result for E0⊥ki.

laser-assisted electron-atomic-hydrogen “elastic” scatter-
ing in the whole angular regime with using of a simplified
dressed wave function of target which does not involve
the space-dependent gauge factor and the infinite sum-
mation over the coupled atomic states. Such a calculation
is much more accurate in describing the collision dynam-
ics than treating the atom as a model potential [33,34]
although the latter may be used for estimation. Due to
the time-dependent nature of the laser-assisted process,
both the electron-electron and electron-nucleus interac-
tions are taken into account. When laser polarization de-
viates from the incident direction of projectile, the axial
symmetry of the scattering process is broken down, and
the summed differential cross-section for a perpendicular
geometry becomes azimuth angle dependent. The numeri-
cal results show that during such a laser-assisted “elastic”
collision, the electron-atom system may exchange a great
number of photons with the laser background. Each mul-
tiphoton cross-section oscillates by a few orders over the
whole scattering angular region. For a parallel polariza-
tion geometry, the result oscillates more frequently in the
medium angular range than in the forward and backward
angles; while for a perpendicular geometry, the oscillation
feature is opposite. At large scattering angles, the sum
rule of Kroll and Watson is violated. This suggests that
at lower impact energy, one may use a strong laser field to
enhance the backward angular distribution which is usu-
ally more difficult to detect in the usual laser-free scat-
tering. When the electric vector of laser is parallel to the
incident direction of electron, the cross-section is most ef-
ficiently enhanced. The total cross-section is significantly
modified in the low energy regime. The more intense the
laser, the more the cross-section is enhanced; the lower the
field frequency, the more the cross-section enhancement.

At present, almost all the free-free experiments have
used CO2 laser as radiation field (~ω = 0.117 eV) and
used argon as target. For such cases, the Kroll-Watson

sum rule is valid in general. Extension to use of power-
ful Nd-YAG lasers (~ω = 1.17 eV) now available is con-
templated by several experiment groups. An experimental
program to study the free-free collision from atomic hydro-
gen will require the collaboration of several experimental
groups if they are to be successful [35]. Such experiments
are necessary to test the theory and our understanding of
laser-modified electron scattering.

This work is supported by the National Natural Science Foun-
dation of China under Grant Numbers 10074060 and 10075043.

Appendix: Derivation of the exchange
amplitude of equation (13)

After working out the time integration in equation (11),
we obtain the exchange amplitude associated with the
transfer of l photons,

f exc
l = −

{
Jl(q·α0)

+
[

l

ωq·α0
Jl(q·α0) +

1
ω̄H

J ′l (q·α0)
]
E0·

∂

∂ki

−
[

l

ωq·α0
Jl(q·α0)− 1

ω̄H
J ′l (q·α0)

]
E0·

∂

∂kf

}
(I1 + I2)

(A.1)

in which I1 and I2 are parametric integrals,

I1 =
1

2π2

∫
dr0dr1eiki·r0−µr0e−ikf ·r1−νr1

(
− 1
r0

)
(A.2)

I2 =
1

2π2

∫
dr0dr1eiki·r0−µr0e−ikf ·r1−νr1 1

r10
(A.3)

with differential parameters µ = ν = 1. In obtaining equa-
tion (A.1), we have used the formulae (9, 10), and

Jl−1(y) + Jl+1(y) =
2l
y
Jl(y) (A.4)

for Bessel functions [30].
The integral I1 in equation (A.2) is in fact a product

of two simple three-fold integrals. It is easy to work out
to yield,

I1 = − 16ν
(k2

i + µ2)(k2
f + ν2)2

· (A.5)

Now lets’ consider the integral I2. Substituting

1
r10

=
1

2π2

∫
dp

eip·(r0−r1)

r10
(A.6)
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into equation (A.3), we obtain

I2 =
1

4π4

∫
dp

1
p2

∫
dr0e−i(p−ki)·r0−µr0

×
∫

dr1ei(p−kf)·r1−νr1

=
16µν
π2

∫
dp

1
p2

1
[µ2 + (p− ki)2]2

1
[ν2 + (p− kf)2]2

=
16µν
π2

I2,2(µ, ν,ki,kf , 0) (A.7)

where I2,2(µ, ν,ki,kf , 0) is the Dalitz integral, which is
generally given by [36,37],

Im,n(µ, ν,ki,kf , k) =∫
dp

1
p2 − k2 − iε

1
[µ2 + (p− ki)2]m[ν2 + (p− kf)2]n

=
(m+ n− 1)!

(m− 1)!(n− 1)!

∫ 1

0

sm−1(1− s)n−1Lm+n(k, Γ, Λ)ds

(A.8)

with

L1(k, Γ, Λ) =
π2i
Λ

log
k + Λ+ iΓ
k + Λ+ iΓ

(A.9)

L2(k, Γ, Λ) = − π2

Γ (k2 − Γ 2 − Λ2 + 2ikΓ )
(A.10)

· · ·

Ll(k, Γ, Λ) = − 1
2(l− 1)Γ

∂Ll−1

∂Γ
(A.11)

where Γ and Λ are given by equations (14, 15) respec-
tively. In equations (A.9–A.11), set k = 0, and by succes-
sive differentiation with respect to Γ , we gain,

L4(0, Γ, Λ) =
π2

24
15Γ 4 + 10Γ 2Λ2 + 3Λ4

Γ 5(Γ 2 + Λ2)3
· (A.12)

According to equation (A.8),

I2,2(µ, ν,ki,kf , 0) = 6
∫ 1

0

s(1− s)L4(0, Γ, Λ)ds

=
π2

4

∫ 1

0

s(1− s)15Γ 4 + 10Γ 2Λ2 + 3Λ4

Γ 5(Γ 2 + Λ2)3
ds. (A.13)

Substituting it into equation (A.7) yields

I2 = 4µν
∫ 1

0

s(1− s)15Γ 4 + 14Γ 2Λ2 + 3Λ4

Γ 5(Γ 2 + Λ2)3
ds. (A.14)

Combine equations (A.1, A.5, A.14), we finally obtain
equation (13) for the exchange amplitude.
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